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Abstract
In this paper, we present a systematic review and evaluation of existing single-image low-light enhancement algorithms.
Besides the commonly used low-level vision oriented evaluations, we additionally consider measuring machine vision per-
formance in the low-light condition via face detection task to explore the potential of joint optimization of high-level and
low-level vision enhancement. To this end, we first propose a large-scale low-light image dataset serving both low/high-level
vision with diversified scenes and contents as well as complex degradation in real scenarios, called Vision Enhancement in
the LOw-Light condition (VE-LOL). Beyond paired low/normal-light images without annotations, we additionally include
the analysis resource related to human, i.e. face images in the low-light condition with annotated face bounding boxes. Then,
efforts are made on benchmarking from the perspective of both human and machine visions. A rich variety of criteria is
used for the low-level vision evaluation, including full-reference, no-reference, and semantic similarity metrics. We also
measure the effects of the low-light enhancement on face detection in the low-light condition. State-of-the-art face detection
methods are used in the evaluation. Furthermore, with the rich material of VE-LOL, we explore the novel problem of joint
low-light enhancement and face detection. We develop an enhanced face detector to apply low-light enhancement and face
detection jointly. The features extracted by the enhancement module are fed to the successive layer with the same resolution
of the detection module. Thus, these features are intertwined together to unitedly learn useful information across two phases,
i.e. enhancement and detection. Experiments on VE-LOL provide a comparison of state-of-the-art low-light enhancement
algorithms, point out their limitations, and suggest promising future directions. Our dataset has supported the Track “Face
Detection in Low Light Conditions” of CVPR UG2+ Challenge (2019–2020) (http://cvpr2020.ug2challenge.org/).
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1 Introduction

Low-light image capturing conditions lead to several kinds
of degradations presented in images, including low visi-
bility, color cast, and intensive noise, etc. To handle this
degradation, low-light image enhancement methods are pro-
posed to enhance the visibility and visual quality of the input
image. The earliest methods directly amplify the illumina-
tion uniformly. Later methods adjust the global illumination
property of an image, e.g. histogram equalization (HE) to
make dark images visible by stretching the dynamic range of
an image (Pizer et al. 1990; Abdullah-Al-Wadud et al. 2007).
However, these methods might fail to well adjust the visual
quality from all aspects, e.g. noise suppression. The Retinex-
based methods (Jobson et al. 1997a, b; Fu et al. 2016; Guo
et al. 2017; Fu et al. 2016; Li et al. 2018; Ren et al. 2018)
are a very important branch. It is first proposed as a model of
human visual perception (Land andMcCann 1971) designed
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Table 1 Comparison between existing low-light enhancement datasets and VE-LOL

Properties Number (training/testing) Synthetic/real Source

Paired dataset

Phos (Vonikakis et al. 2013) 225 Real Camera

LLNet (Lore et al. 2017)1 211,250/211,250 (patches) Synthetic Testing images

MSR-Net (Shen et al. 2017)1 8000/2000 Synthetic UCID/BSD/Google

SID (Chen et al. 2018) 5094 (RAW images) Real Camera

SICE (Cai et al. 2018) 589 (sequences) Real Camera

SMOID (Jiang and Zheng 2019) 202 (RAW videos) Real Camera

DRV (Chen et al. 2019) 179 (RAW videos) Real Camera

LOL (Wei et al. 2018) 1485/15 Synthetic + Real RAISE/Camera

DeepUPE (Wei et al. 2018)1 2750/250 Synthetic + Real Flicker/Camera

VE-LOL-L 2100/400 Synthetic + Real RAISE/Camera

Properties Number (training/testing) Synthetic/real Annotations

Unpaired dataset

LIME (Guo et al. 2017) 10 Real No

DICM (Lee et al. 2013a) 69 Real No

MEF (Ma et al. 2015) 17 Real No

NPE (Wang et al. 2013a) 85 Real No

VV2 24 Real No

ExDARK (Loh and Chan 2019) 7363 Real Object bounding boxes/categories

Nighttime driving (Dai and Gool 2018) 50 (35,000 unlabeled) Real Densely Annotated Semantic Labels

Dark Zurich (Sakaridis et al. 2019) 151 (5336 unlabeled) Real Densely annotated semantic labels

VE-LOL-H 6940/4000 Real Face bounding boxes

1 The datasets are still not publicly available
2 https://sites.google.com/site/vonikakis/datasets

to compute visual appearance. Later on, based on the theoret-
ical basis, the variational versions of Retinex model follow
the paradigm of layer decomposition and are applied to low-
light image enhancement (Jobson et al. 1997b). The methods
decompose images into two components: reflectance and
illumination. Then, the enhanced results are obtained by fur-
ther processing and combining these two parts.With properly
enforced priors and regularizations, the superiority of this
branch is witnessed in noise suppression and high-frequency
detail preservation. Recently, data-driven image process-
ing applications have emerged with promising performance.
Learning-based low-light image enhancementmethods (Lore
et al. 2017; Shen et al. 2017; Wei et al. 2018) have been
studied. With the knowledge of large-scale data, these meth-
ods present the general effectiveness in handling low-light
images in diversified conditions, to achieve an overall good
visual quality.

Due to the rapid development of single-image low-light
enhancementmethods, researchers are payingmore attention
to this domain.However, fewefforts have beenmadeon a sys-
tematic review and comprehensive benchmarkwork based on
a large-scale dataset for both low-level and high-level vision

tasks, which can provide the community a retrospect of pre-
viousmethods and a prospect of future work. However, in the
first step, it is non-trivial to collect a comprehensive large-
scale low-light image dataset, as it is hard to capture real
low-light images (paired/unpaired) with certain kinds of con-
tents, e.g. given objects, in a controllable environment (given
the degradation condition). This limits our capacity to train,
evaluate, and compare the strengths and limitations of differ-
ent approaches based on large-scale benchmarks, especially
the recent data-driven approaches, e.g. deep-learning meth-
ods. To the best of our knowledge, all the currently available
low-light image datasets listed in Table 1 have limitations in
various aspects.

First, previous datasets usually serve only one of human
and machine vision purposes. Previous datasets (Vonikakis
et al. 2018; Guo et al. 2017; Wang et al. 2013a; Lee et al.
2013a; Ma et al. 2015) consisting of only low-light images
(without annotations) mainly focus on the subjective evalu-
ation and user study from the perspective of visual quality.
With the rise of deep learning-based methods (Lore et al.
2017; Shen et al. 2017; Wei et al. 2018), some new datasets
provide paired low/normal-light images for training and eval-

123

https://sites.google.com/site/vonikakis/datasets


International Journal of Computer Vision (2021) 129:1153–1184 1155

uating low-light enhancement methods from the perspective
of low-level signal fidelity. These two kinds of datasets are
limited to the evaluation of low-level visual quality. Recently,
Exclusively Dark dataset (Loh and Chan 2019) is proposed
including low-light images with image classes and local
object bounding box annotations to evaluate high-level vision
tasks, i.e. image recognition and object detection. In Dai and
Gool (2018), Sakaridis et al. (2019), two datasets includ-
ing unlabeled nighttime images, unlabeled twilight images
with correspondences to their daytime versions, and night-
time images with pixel-level dense annotations are proposed
to serve evaluation of semantic segmentation at night.

Second, most of the previous datasets are not close to real
scenario and diverse at the same time. Except for LOL, previ-
ous paired datasets include either synthetic or real low-light
images, therefore suffer from the limitation: for synthetic
images, the simulated degradation might deviate from the
real one; for real images, the diversity of captured contents
are usually limited, due to the resource cost of on-site shoot-
ing.

Third, previous low-light datasets do not pay enough
attentions to analytics related to human. However, in real
applications, the videos that include human and the related
behaviors, such as surveillance videos, should be given a
priority as they are high valuable and include the most crit-
ical information. The absence of such a dataset captured
in low-light conditions leads to a lack of exploration and
development of the related analytic approaches in the given
degraded conditions. For example, there are also few consid-
erations on how to construct and optimize a joint pipeline of
image enhancement and detection methods.

Finally, the scale anddiversity ofmost existing datasets are
limited. Especially for unpaired datasets, before ExDARK,
the images of previous datasets are fewer than 100, which
limits the potential to provide a comprehensive and system-
atic evaluation.

In order to address these issues, a large-scale benchmark
dataset,VisualEnhancement inLOw-Light conditions (VE-
LOL) with analysis resources related to human, is developed
as the research material for exploring and evaluating vision
enhancement approaches for both human perception and
machine analytics. Based on the dataset, we make efforts in
providing a detailed survey on low-light enhancement meth-
ods and a quantitative benchmarking of these methods from
both perspectives of human and machine visions. Beyond
that, with the wealth of the proposed dataset, we also explore
the novel problem of joint optimization of low-light enhance-
ment and face detection.

The paper has the following contributions:

– We introduce the newly proposed VE-LOL single-image
low-light enhancement benchmark. It includes two sub-
sets in the low-light condition: one including paired

low and normal-light images (synthesized and captured)
for the evaluation of visual quality enhancement, the
other including captured low-light images with bound-
ing boxes annotating the human faces for evaluation of
face detection from the perspective of high-level com-
puter vision. To the best of our knowledge, this is the first
large-scale dataset captured in the low-light condition for
both kinds of evaluation purposes. The superiorities of
our VE-LOL are illustrated in detail in Sect. 3.

– We provide a detailed survey on previous datasets and
methods focusing on single-image low-light enhance-
ment. Our survey provides a holistic view of most of
the existing methods. We believe it can provide a useful
starting point to understand the main development of the
field, the limitations of existingmethods, and the possible
future directions.

– Based on VE-LOL, we go a step further to conduct
extensive and systematic experiments to quantitatively
compare state-of-the-art single-image low-light enhance-
ment methods with various evaluation criteria, including
no-reference, full-reference, and high-level feature sim-
ilarity metrics as well as the task-driven metric, i.e. face
detection accuracy. Our evaluation and analysis demon-
strate the performance and limitations of state-of-the-art
algorithms, and bring in rich insights.

– Beyond the rich dataset and comprehensive benchmark
analysis, we also explore to build a powerful face detector
jointly optimized with a learnable low-light enhance-
ment. A half cyclic constraint is introduced for image
modeling and regularizing the training of the low-light
image enhancer. The features at different levels of the
low-light enhancement and face detection modules are
correlated across the two phases, and learn to benefit
each other mutually. Our preliminary attempt improves
the face detection accuracy in the low-light condition and
provides useful insights on the combination of low and
high-level vision tasks to the community.

The rest of this paper is organized as follows. Section 2
provides a brief but systematic review of previous low-light
enhancement datasets and approaches. Section 3 presents the
proposed dataset and related analysis. In Sect. 4, the evalu-
ation of representative state-of-the-art methods with diverse
kinds of metrics is illustrated. Section 5 shows our explo-
ration of joint low-light enhancement and face detection,with
the wealth of VE-LOL. Finally, concluding remarks are pro-
vided in Sect. 6.
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2 Literature Review of Low-Light
Enhancement

2.1 Existing Datasets and Evaluations

Paired Datasets As data-driven methods become popular,
some datasets are proposed for training and evaluations in
low-light image enhancement. In (2013), Vonikakis et al.
built a dataset including 225 images captured in 15 scenes.
In every scene, 15 images are included: 9 images captured
under various strengths of uniform illumination, while 6
images under different degrees of non-uniform illumination.
In (2017), Lore et al. synthesized 422,500 patches based on
169 standard images1 with the random Gamma transforma-
tion and Gaussian noise. In (2017), Shen et al. synthesized
10,000 low and normal-light image pairs with nature images
from UCID (Schaefer and Stich 2004), BSD (Martin et al.
2001) andweb images collected using Google search engine,
and used 8000 and 2000 images for training and testing,
respectively. In (2018), Chen et al. introduced the dataset
See-in-the-Dark (SID) including 5094 short-exposure low-
light raw images and corresponding long-exposure reference
raw images. Cai et al. (2018) built the SICE dataset, includ-
ing under/over-contrast and normal-contrast encoded image
pairs, in which the reference normal-contrast images are gen-
erated from 589 image sequences and 4413 high-resolution
images of different exposures by Multi-Exposure image
Fusion (MEF) or High Dynamic Range (HDR) algorithm.
LOw-Light (LOL) dataset (Wei et al. 2018) includes 500
captured paired images (485 pairs for training and another
15 ones for evaluation) and 1000 synthetic ones for training.
Deep Underexposed Photo Enhancement (DeepUPE) (Wang
et al. 2019) proposes a new dataset of 3000 underexposed
photos (2750/250 for training and testing respectively) cov-
ering diverse lighting conditions. 85% images are captured
in the resolution of 6000, 4000 with Canon EOS 5DMark III
and Sony ILCE-7 while around 15% more images are col-
lected from Flickr. Dark RawVideo (DRV) (Jiang and Zheng
2019) includes 202 static videos, captured in indoor and
outdoor scenes in different lighting conditions. The lighting
range of the captured videos is in 0.5 to 5 lux range. The long
and short exposed frames are well-aligned. See-Moving-
Objects-in-the-Dark (SMOID) (Chen et al. 2019) includes
179 street view video pairs including moving vehicles and
pedestrians at different exposure levels.Well-exposed videos
are generated with a demosaicing procedure to obtain ground
truth videos. These works pay attention to enhancing low-
light images to satisfy the need for human visual perception.

Unpaired Datasets Several public datasets provide lots of
under-exposed images used for subjective evaluations. VV1

1 http://decsai.ugr.es/cvg/dbimagenes/

includes 24 images, part of which are normally exposed and
other parts of severely under/over-exposed and provide the
most challenging cases for low-light enhancement. LIME
(Guo et al. 2017) contains 10 low-light images. NPE (Wang
et al. 2013a) contains 85 low-light images downloaded from
the Internet captured in 8 outdoor nature scenes. DICM (Lee
et al. 2013a) contains 69 captured images from commercial
digital cameras. MEF (Ma et al. 2015) contains 17 high-
quality image sequences including natural scenarios, indoor
and outdoor views and man-made architectures. (Loh and
Chan 2019) developed the Exclusively Dark dataset includ-
ing 7363 low-light images from very low-light environments
to twilight (i.e 10 different conditions) annotated with 12
object classes using both image level categories and local
object bounding boxes. (Hwang et al. 2015) introduced the
KAIST Dataset, which contains various night-time traffic
sequences for pedestrian detection. Theseworks are designed
to meet the need for machine visions, namely improving the
performance of high-level vision tasks.

Other Attempts and Evaluation Criteria There are also
important attempts on datasets in the related image process-
ing tasks for multiple purposes, e.g. dehazing (Li et al. 2019),
unconstrained conditions (Nada et al. 2018), etc. Previous
metrics for low-light enhancement, including full-reference
and no-reference metrics, are summarized in Table 2. In
our work, we build a comprehensive dataset capturing both
paired and unpaired images in low-light conditions to meet
the need for both visual quality enhancement and face detec-
tion accuracy, and make an effort on benchmarking the
existing methods with diverse metrics based on the dataset.

2.2 Low-Light Enhancement Approach

Based on the working mechanism and processed data type,
we categorize the single-image low-light enhancement into
seven categories: histogram equalization, dehazing, statisti-
cal model, Retinex model, deep-learning, compound degra-
dation, and RAW. We will discuss the existing methods of
these approaches in detail in the subsequent sections. A sum-
mary of previous works is given in Tables 3 and 4. A timeline
is provided in Fig. 1.

HistogramEqualizationHistogram equalization (HE)makes
dark images visible by stretching the dynamic range of
an image (Pizer et al. 1990) via manipulating the corre-
sponding histogram. However, HE applies the adjustment
globally, leads to undesirable local illumination and amplify-
ing buried intensive noise. Later methods apply several kinds
of constraints, e.g. mean intensity preservation (Ibrahim and
Pik Kong 2007), noise robustness, white and black stretch-
ing (Arici et al. 2009), and a new distortion model (Lee et al.
2014a), to achieve the improved overall visual quality. To
better adjust the histograms in a more finely-grained way,
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Table 2 Summary of previous evaluation metrics for low-light enhancement

Metrics Reference Measurement Work

LOE (Wang et al. 2013a, 2019) No Lightness distortion Guo et al. (2017), Ying et al. (2017a, c), Wang
et al. (2019), Zhang et al. (2019), Tao et al.
(2017), Lv et al. (2018)

Color difference (Wang and Zhang
2010)

No Color distortion Ying et al. (2017c)

NIQE (Mittal et al. 2013) No Natural preservation Shen et al. (2017), Wang et al. (2019), Zhang
et al. (2019), Jiang et al. (2019)

Discrete entropy (Ye et al. 2007) No Color richness and sharpness Shen et al. (2017)

Angular error (Hordley and Finlayson
2004)

Full Color Distortion Shen et al. (2017)

VIF (Sheikh and Bovik 2006) Full Information fidelity Ying et al. 2017a; Lv et al. 2018

PSNR Full Signal fidelity Chen et al. (2018), Lore et al. (2017), Wang
et al. (2019), Wang et al. (2019), Zhang
et al. (2019), Cai et al. (2018), Lv et al.
(2018), Ren et al. (2019)

SSIM (Wang et al. 2004) Full Signal and structure fidelity Shen et al. (2017), Chen et al. (2018), Lore
et al. (2017), Wang et al. (2019), Wang et al.
(2019), Zhang et al. (2019), Lv et al.
(2018), Ren et al. (2019)

FSIM (Zhang et al. 2011) Full Signal and structure fidelity Cai et al. (2018)

TMQI (Yeganeh and Wang 2013) Full Signal and structure fidelity Tao et al. (2017), Lv et al. (2018)

Average brightness (Chen et al. 2006) Full Brightness fidelity Lv et al. (2018)

in Lee et al. (2013a), Nakai et al. (2013), the histogram
equalization is applied to the pixel’s difference adaptively.
In some methods, side information, e.g. depth informa-
tion (Lee et al. 2014b), is introduced to guide the pixel
value transformation adaptively. In Ying et al. (2017b), Wu
et al. (2017), the imaging and visual perception models are
injected to guide the low-light image enhancement, e.g. cam-
era response model (Ying et al. 2017b) to find the best
exposure ratio and visual importance (Wu et al. 2017) to
control the contrast gain. In general, with more side infor-
mation and constraints, HE-based methods improve local
adaptivity of the enhancement process. However, most meth-
ods are not flexible enough for visual property adjustment in
local regions and lead to undesirable local appearances, e.g.
under/over-exposure and amplified noise.

Dehazing Some methods (Li et al. 2015; Zhang et al. 2012;
Dong et al. 2011) regard the inverted low-light images as
haze images, and enhance visibility by applying dehaz-
ing. The dehazing result is inverted as the enhancement
result. These methods also consider noise suppression. In
Zhang et al. (2012), a joint-bilateral filter is applied after
enhancement. In Li et al. (2015), adaptive BM3D denois-
ing operations (Dabov et al. 2007) are conducted to separate
the base and enhancement layers, and then adjust these two
layers adaptively. These methods obtain reasonable results.
However, a convincing physical explanation on their basic

model is missing, and applying denoising as post-processing
may lead to blurred details.

Statistical Model-Based Methods A wide range of meth-
ods depicts desirable properties of images with statistical
models. They are carefully designed with expert domain
knowledge. Some are based on the physical and statistical
measures, such as interpixel relationship (Celik and Tjahjadi
2011), local contrast measure (Pierre et al. 2016), percep-
tual quality measure (Zhang et al. 2016). Some are designed
based on mathematical processes, such as nonlinear diffu-
sion filter (Liang et al. 2016), generalized Gaussian mixture
model (Li et al. 2018). There are also methods built based
on imaging or visual perception guided models (Ying et al.
2017c, a), such as camera response model and just noticeable
difference (Chang and Jung 2016; Su and Jung 2017). These
methods achieve good results in their focused aspects. How-
ever, they are not adaptive enough when coming across the
cases out of assumed input ranges, such as the input images
with intensive noise.

Retinex Theory BasedMethodsRetinexmodel is proposed as
a human visual perception model (Land and McCann 1971)
to compute visual appearance. The successive variational
versions of Retinex model follow the layer decomposition
paradigm, which is generally adopted in low-light image
enhancement (Jobson et al. 1997b). Themethods decompose
images into two components: reflectance and illumination.
Then, the enhanced results are obtained by further processing
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Fig. 1 Milestones of single-image low-light enhancement methods: histogram equalization, dehazing, statistical model, Retinex model, deep-
learning (DL), RAW+DL, Retinex+DL, compound degradation, and related applications

and combining these two parts. To simultaneously suppress
the noises and preserve high-frequency details, a series of
methods built on Retinex theory (Land 1977) with diver-
sified priors and constraints. Single-scale Retinex (Jobson
et al. 1997b) defines a practical implementation of Retinex
center and surrounding Retinex, and treats the reflectance
as the final enhanced result. Multi-scale Retinex (Jobson
et al. 1997a) creates enhanced results by fusing different
single-scale Retinex outputs. Successive methods (Lee et al.
2013b; Wang et al. 2013b, 2014) increase the adaptivity of
enhancement operations on the decomposed layers. In Lee
et al. (2013b), the weight of each single-scale Retinex is
adaptively computed based on the input image. Wang et al.
(2013b) construct a bright-pass filter for Retinex decompo-
sition, and try to preserve the naturalness while enhancing
details in low-light images. InWang et al. (2014), prior distri-
butions of the reflectance and the illumination, as well as the
parameters of the enhancement process, are jointly modeled
with a hierarchical Bayesian model. Some methods explore
the proper domain to apply the reconstruction prior. In Fu
et al. (2014), a novel model without the logarithmic trans-
form is built to well preserve edges. There are also methods
focusing on exploiting more effective priors (Fu et al. 2016;
Guo et al. 2017; Fu et al. 2016; Cai et al. 2017; Xu and
Jung 2017; Xu et al. 2019) to regularize the enhancement
of illumination and reflectance layers. Fu et al. (2016) pro-
pose an improved version by fusing different merits into a
single one based on multiple derivatives of the estimated
illumination. Guo et al. (2017) proposed to refine an initial
illumination map with a structure aware prior. In Fu et al.
(2016), a weighted variational model is proposed to impose
better prior representation in the regularization terms. These
methods consider less on the constraints on the reflectance,
and the latent intensive noises in the low-light regions are
usually amplified. Li et al. (2018) proposed to extend the tra-
ditional Retinex model to a robust one with an explicit noise
term, and made the first attempt to estimate a noise map
out of that model via an alternating direction minimization

algorithm. Ren et al. (2018) also aimed to enhance low-light
images based on that robust Retinex model, and developed a
sequential algorithm to estimate a piecewise smoothed illu-
mination and a noise-suppressed reflectance. These methods
show impressive results in stretching the contrast of the image
and removing noise in some cases. However, as the methods
and the related priors are hand-crafted, they have poor adapt-
ability and usually generate unpromising results when being
applied to the large-scale testing data.

Deep-Learning Based Methods The era of deep-learning
(DL) low-light enhancement starts in year 2017. After that,
due to its distinguished performance and flexibility, this
branch gradually becomes the mainstream. Lore et al. (2017)
used a deep auto-encoder named Low-Light Net (LLNet) to
perform contrast enhancement and denoising. In Shen et al.
(2017), Tao et al. (2017), and Lv et al. (2018), the multi-
scale features are injected into the multi-branch architecture
to formbetter low-light enhancement results. In someof these
works (Lore et al. 2017; Cai et al. 2018; Wang et al. 2019),
efforts are put into creating paired low/normal-light datasets
for network training. Diversified losses are enforced to regu-
larizing the enhancementmodel training, such as,MSE (Lore
et al. 2017), SSIM loss (Cai et al. 2018), and compound
loss (Wang et al. 2019). In Shen et al. (2017), Wei et al.
(2018);Wang et al. (2019), Retinex structure is fused into the
design of effective deepnetworks, to absorb the advantages of
both Retinex-based methods, i.e. good signal structure, and
deep learning-based methods, i.e. the general useful priors
extracted from the large-scale dataset. In Ren et al. (2019),
layer decomposition and separative processing are intro-
duced for better structure and detail modeling. In Jiang et al.
(2019), Kim et al. (2019), the adversarial learning is intro-
duced to capture the visual properties beyond the traditional
metrics. Especially for EnlightenGAN (Jiang et al. 2019),
unpaired learning is introduced to train a light enhancement
model, which is the potential to get rid of paired dataset con-
struction and address the domain shift problem between the
training data and the practical applications. In general, with
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the powerful priors extracted from the large-scale data, deep
learning methods achieve the general superiority in perfor-
mance. Some traditional ideas are injected to guide the design
of the deep networks, such as Retinex model and the layer
separation.

CompoundDegradationandRAWEnhancement Someworks
consider addressing the problem of low-light enhancement
as well as its accompanying issues, such as denoising (Lim
et al. 2015; Liu et al. 2015; Li et al. 2015; Yang et al.
2018) and dehazing (Kim and Kwon 2019). Some meth-
ods address the issue with a sequential architecture (Lim
et al. 2015; Liu et al. 2015) while others achieve joint pro-
cessing with a unified model (Li et al. 2015; Yang et al.
2018). In general, these methods can achieve good results in
their assumed conditions, while a comprehensive model to
capture all degradation and handle the corresponding degra-
dation is still absent. Besides, there are works (Chen et al.
2018, 2019; Jiang and Zheng 2019) considering the appli-
cation scenario to obtain enhanced images from raw images
(un-processing images). The datasets of raw short-exposure
low-light images and the corresponding raw long-exposure
reference images are introduced and novel end-to-end train-
able pipelines for processing low-light images/videos are
designed. The attempt is meaningful while this direction
expects more attention.

Related Applications There are also recent works focus-
ing on the related applications in low-light conditions or
at nighttime. In Sasagawa and Nagahara (2020), Loh and
Chan (2019), the object detection problem in the low-light
condition is explored. Loh et al. (2019) offered a large-
scale collection consisting of 7363 low-light images with
12 object classes, annotated with both image-level classes
and object-level bounding boxes. Yukihiro et al. (2020) pro-
posed to merge the pre-trained enhancement model (from
RAW image to RGB image) and pretrained detection model
(from RGB image to bounding boxes) using newly pro-
posed glue layers and a generative model, which can save
the effort to create an new dataset (from RAW image to
bounding boxes). In Dai and Gool (2018), Sakaridis et al.
(2019, 2020), two datasets including unlabeled nighttime
images, unlabeled twilight images with correspondences to
their daytime versions, and nighttime images with pixel-
level dense annotations are proposed to serve evaluation of
semantic segmentation at night. A curriculum framework is
proposed to adapt semantic segmentationmodels from day to
nigh progressively. The cross-time-of-day correspondences
are utilized to guide the label inference in the nighttime
domains. In (2020), Yan et al. proposed a two-step method
that employs separate operations on the high/low-frequency
component of the gray-scale and color images, respectively,
with the consistent loss between the two-step outputs.

Summary and Prospect We can obtain several interesting
observations from the literature review:

– Retinex-basedmethods are themostwidely adopted prior
while in recent years since 2017, deep learning methods
become the mainstream, which demonstrates the effec-
tiveness of Retinex signal structure and data-driven priors
extracted from the large-scale data.

– Statistical model-based methods are also a large group.
However, the different methods within the same group
also vary from each other. Their designs accompany
much expert domain knowledge, which is not flexible
and general to incorporate other widely used priors.

– Deep-learning methods are augmented with some tradi-
tional priors, such as Retinex structure and layer-specific
priors, to achieve better enhancement performance.

– Adversarial learning is utilized to capture the visual prop-
erties beyond the traditional metrics to provide more
visually pleasing results.

– Unsupervised or semi-supervised (unpaired) learning
that benefits to getting rid of laborious paired dataset con-
struction and address the domain shift problem between
the training data and the practical applications are
expected in the future works.

Despite the prosperity of low-light enhancement, there is a
lack of extensive and systematic analysis of existing state-of-
the-art low-light enhancement methods with comprehensive
evaluation criteria. Therefore, in the following sections, we
propose a novel dataset serving the purpose and apply exten-
sive comparisons to show performance from the perspectives
of human and machine visions.

3 A Large-Scale NewDataset: VE-LOL

We propose the Vision Enhancement in LOw Light condi-
tions (VE-LOL) dataset, a novel large-scale dataset including
both paired images, and unpaired images with annotations.
It provides a wealth of materials to fairly evaluate and com-
pare the performance of single-image low-light enhancement
methods. A wide range of evaluation metrics, including no-
reference, full-reference, and high-level feature metrics as
well as the task-driven metric, i.e. face detection accuracy,
are utilized in the evaluations.

The advantages of our proposed dataset can be summa-
rized as follows.

– Comprehensive Consideration: VE-LOL supports evalu-
ation for both low-level (with the subset VE-LOL-L) and
high-level vision (with the subset VE-LOL-H).
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(a) VE-LOL(VE-LOL-L-Cap)

(b) LOL

Fig. 2 Compared with LOL (bottom panel) consisting of paired low and normal-light images with a single under-exposure level, our proposed
VE-LOL-L additionally includes paired low and normal-light images with different under-exposure levels at the same scene (top panel)

– Reality: VE-LOL contains real-captured paired images
under both low-light and normal-light conditions, as well
as the low-light face imageswith the corresponding anno-
tations.

– Diversity: VE-LOL-L includes synthesized images with
diversified backgrounds and a variety of objects.

– Human-Relevant: VE-LOL-H includes analysis resourc-
es related to human, i.e. annotated human face bounding
boxes, which enables to evaluate existing methods from
the perspective of machine vision and to develop joint
enhancement and detection method.

– Large Scale: VE-LOL-H contains 10,940 images, whose
scale is comparable toWIDER-FACE, the largest dataset
captured in normal-light conditions and includes 32,203
images. Therefore, VE-LOL-H is so far the largest low-
light detection dataset for high-level vision tasks. Beyond
solely enabling testing evaluation as UFDD (Nada et al.
2018) does, VE-LOL supports fully supervised training,
which might promote new directions or facilitate new
methods in the related fields.

3.1 Dataset Overview

VE-LOL consists of two subsets: a paired one VE-LOL
Low-Level Vision (VE-LOL-L) for training and evaluating
low-level vision enhancement, and an unpaired one VE-
LOL High-Level Vision (VE-LOL-H) for training low-light
enhancement models and evaluating the effect of low-light
enhancement models on high-level vision tasks, e.g. face
detection.

VE-LOL-L includes 2500 paired images. Among them,
1000 pairs (VE-LOL-L-Syn) are synthesized from RAW
images in RAISE dataset (Dang-Nguyen et al. 2015). The

synthesis process follows a similarway to that of LOLdataset
(Wei et al. 2018) considering both the low-light degradation
process and natural image statistics. Differently, we addi-
tionally consider noise modeling at the RAW image level
following (Brooks et al. 2019). The parameters of the noise
model are estimated based on the Darmstadt Noise Dataset,
which is captured by using four different cameras: SonyA7R,
Olympus E-M10, Sony RX100 IV, and Huawei Nexus 6P.
Therefore, the noisemodel in theory can adapt to awide range
of cameras. Hence, in our work, we directly use the default
setting in Brooks et al. (2019) to synthesize our low-light
noisy data. For this collection, we mainly hope to capture
more diversified scenes and contents as well as more abun-
dant illumination variation. The other 1500 images are real
image pairs (VE-LOL-L-Cap). 500 of them are also captured
in the same way as LOL dataset (Wei et al. 2018) while the
other 1000 pairs are captured with different under-exposure
levels. That is, for a given captured normal-light image,
we also capture its low-light versions with different low-
light exposure levels. The difference between our multiple
under-exposed image pairs in VE-LOL and the pairs in LOL
dataset (Wei et al. 2018) is visualized in Fig. 2. The multiple
under-exposure levels make the contained degradation more
diverse and provide more abundant resources to evaluate
the effectiveness and robustness of the enhancement mod-
els. Note that, the images in the captured collection include
real visual degradation in low-light conditions. Therefore, the
wholeVE-LOL-L collection (VE-LOL-L-Syn andVE-LOL-
L-Cap) includes diversified scenes and contents, abundant
illumination variations, and real low-light visual degrada-
tion (including intensive noise), which provides the desirable
resources for evaluating in low-level visual quality.
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Table 5 Summary of our
VE-LOL dataset

Subset #Image Real/Synthetic Paired Annotations

VE-LOL-L-Syn 1000 Synthetic Yes No

VE-LOL-L-Cap 1500 Real Yes No

VE-LOL-H 10,940 Real No Yes

(a)Scale Change (b) Pose Variation

(c) Moderate Under-Exposure (d) Occlusion

Fig. 3 Our proposed VE-LOL-H dataset for face detection has a high
degree of variability in scale, pose, appearance, occlusion, and illumi-
nation. The left half of each image is the original one while the right
half is enhanced by LIME for better visualization

Inspired by Anaya and Barbu (2018), we use a three-
step shooting strategy to process the images in the captured
collection of VE-LOL-L. For one scene, we first shoot
two normal-light images N1 and N2. Then, we change the
exposure time and ISO to capture a series of low-light
images. Finally, we set the exposure time and ISO back to
shoot another two normal-light images N3 and N4. Follow-
ing (Anaya and Barbu 2018), the average of Ni (i=1,2,3,4) is
treated as the ground-truth G = 1

4

∑4
i=1 Ni . Then, we check

whether there is object or camera movement. Specifically,
the misalignment for these normal-light images is measured
by M = 1

4

∑4
i=1 MSE(Ni ,G). If M > 0.1, we abandon the

corresponding pair.
VE-LOL-H is composed of 10,940 images (6940 for

training and validation, and 4000 for testing) taken in
under-exposure conditions where human faces are manually
annotated with bounding boxes. The training and evalua-
tion sets include 53,619 annotated faces and the testing set
includes 37,711 annotated faces. Table 5 presents a summary
of our VE-LOL-L and VE-LOL-H dataset. Because previous
works, e.g. LOL (Wei et al. 2018), have made great efforts
in building datasets similar to VE-LOL-L, in the next part,
we only focus on illustrating VE-LOL-H in detail, which is
largely beyond considerations of previous works.

(a) Dehazing (2011) (b) LIME (2017)

(c) MF (2016) (d) MSR (1997a)

Fig. 4 Example images after low-light enhancement

3.2 VE-LOL-H for face detection in Low-Light
Condition

Overview Beyond VE-LOL-L used for training and evalu-
ating low-light enhancement methods from the perspective
of low-level vision, we make endeavors to build a dataset
captured in the low-light condition with high-level annota-
tions, i.e. human face bounding boxes. Images in VE-LOL-H
are captured in the under-exposed condition. Besides human
faces, VE-LOL-H contains diversified objects, as shown
in Fig. 3. Bounding boxes in images denote where faces
are. They are manually selected using LabelImg Toolbox.2

The bounding boxes provide resources to train and perform
related evaluation experiments. Table 6 shows a comparison
of VE-LOL-H to previous datasets, including both detection
datasets in degraded conditions and face detection datasets.

Collection and Annotation This collection consists of images
recorded from Sony α6000 and Sony α7 E-mount cameras
with different capturing parameters on several busy streets
around Beijing, where faces with various scales, poses, and
appearances are captured. The resolution of these images
is 1080 × 720 (down-sampled from 6K × 4K for maxi-
mum convenience). This collection includes 21,422 captured
images in total. After filtering out those without sufficient
information (lacking faces, too dark to see anything, etc.),

2 https://github.com/tzutalin/labelImg
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Fig. 5 Face distribution in VE-LOL-H collections. Image number denotes the number of images belonging to a certain category. Face number
denotes the summation number of faces belonging to a certain category. FR and FN denote face resolution (pixel2) and number, respectively

Table 6 Comparison of
VE-LOL-H to previous datasets

Dataset #Image #Object (Face) #Train/Test Conditions

ExDark (Loh and Chan 2019) 7363 23,710 4800/2563 Low light

UFDD (Nada et al. 2018) 6424 10,895 0/6424 Complex

MALF (Yang et al. 2015) 5250 11,931 250/5000 Normal

WIDER FACE (Yang et al. 2016) 32,303 393,703 12,921/16,152 Normal

VE-LOL-H 10,940 91,330 6940/4000 Low light

we select 10,940 images for human annotation. The bounding
boxes are labeled for all the recognizable faces in our collec-
tion.Wemake the bounding tightly fit the forehead, chin, and
cheek. If a face is occluded,we only label the exposed regions
with skins. If the most of a face is occluded, we just ignore it.
For this collection, we observe commonly seen degradations
including poor image quality, under-exposure, and intensive
noise in the results generated by enhancement methods, as
shown in Fig. 4.

Data Distribution Each annotated image contains up to 34
human faces. The resolutions of faces in these images range
from 1 × 2 to 335 × 296. The specific distributions of the
ranges of the resolution and the number of faces are analyzed
in Fig. 5. It is observed that, the resolution ofmost faces in our
dataset is below 300 pixel2 and the number of faces mostly
falls into the range [1, 20]. Our face resolution is smaller than
the object resolutions of the commonly used object detection
datasets, e.g. MNIST (28 × 28) and CIFAR-10 (32 × 32),
which poses new challenges jointlywith low-light conditions
in the community.

4 Algorithm Benchmarking

Based on the rich resources provided by VE-LOL, we evalu-
ate representative state-of-the-art methods with diverse kinds
of metrics.

4.1 Evaluation Protocols

From Full-Reference to No-Reference As denoted in Li et al.
(2019), the full-reference signal and structure fidelity-driven
PSNRandSSIMmetrics are not enough to evaluate the visual
quality of a series of image processing tasks, e.g. dehazing
and low-light enhancement, because of their misalignment
to human visual perception. Thus, based on our reviews
of previous metrics in Table 2, we additionally select two
full-reference metrics, VIF and angular error, to measure
the information fidelity and color distortion of the enhanced
results. Besides, we adopt several no-reference IQA metrics
(i.e. LOE (Wang et al. 2013a), NIQE (Mittal et al. 2013),
BRISQUE (Mittal et al. 2012), ENIQA(Chen et al. 2018), IL-
NIQE (Zhang et al. 2015),HOSA(Xuet al. 2016), SSEQ (Liu
et al. 2014), and BLIINDS-II (Saad et al. 2011)), to measure
the lightness distortion, spatial domain statistics, and natu-
ralness preservation.

From Low-Level to High-Level Feature Similarity Besides
measuring the enhancement quality from the perspective
of low-level signal structures, we also hope to measure
whether the low-light enhancement methods well preserve
the high-level semantics. Therefore, we use the perceptual
metric (Johnson et al. 2016) to measure the similarity of the
enhanced results and ground truth from the semantic view.
Here, we use the first and fourth layers of VGG features
for metric calculation, denotes as Perceptual_1 and Percep-
tual_4.

Task Driven Metric Additionally, we hope to measure the
effect of low-light enhancement methods on the final per-
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Table 7 The code sources of compared methods

Methods Project Page

Multi-Scale Retinex (MSR), In Inverse Dehazing (Dehazing), Brightness
Preserving Dynamic Histogram Equalization (BPDHE), Naturalness
Preserved Enhancement (NPE), Multiple image Fusion (MF), Simultaneous
Reflectance and Illumination Estimation (SRIE), Bio-Inspired
Multi-Exposure Fusion (BIMEF)

https://eithub.com/baidut/BIMEF

Contextual and Variational Contrast enhancement (CVC), DHECI, Histogram
Equalization (HE), Layered Difference Representation (LDR), Weighted
Approximated Histogram Equalization (WAHE), Adaptive MultiScale
Retinex (AMSR)

https://github.com/baidut/OpenCE

LLNet https://github.com/kglore/llnetcolor

RetinexNet https://github.com/weichen582/RetinexNet

Joint Enhancement and Denoising (JED) https://github.com/tonghelen/JED-Method

Robust Retinex Model (Robust) https://github.com/martinli0822/Low-light-
image-enhancement

Single Image Contrast Enhancer (SICE) https://github.com/csjcai/SICE

Kindling the Darkness (KinD) https://github.com/zhangyhuaee/KinD

Deep Underexposed Photo Enhancement (Deep-UPE) https://github.com/wangruixing/DeepUPE

Low-light IMage Enhancement (LIME) https://sites.google.com/view/xjguo/lime

DSFD https://github.com/yxlijun/DSFD.pytorch

PyramidBox https://github.com/yxlijun/Pyramidbox.pytorch

SRN https://github.com/ChiCheng123/SRN

SSH https://github.com/dechunwang/SSH-pytorch

Faster-RCNN https://github.com/hdjsjyl/face-faster-rcnn.
pytorch

formance of high-level vision tasks. With the wealth of
VE-LOL-H, we cascade low-light enhancement methods as
a preprocessing of face detection, and use the face detec-
tion performance to measure the effectiveness of low-light
enhancement from the machine vision view.

4.2 Baseline Enhancement and DetectionMethods

We test state-of-the-art algorithms for light/contrast enhance-
ment: Multi-Scale Retinex (MSR) (Jobson et al. 1997a),
Inverse Dehazing (Dehazing) (Dong et al. 2011), Bright-
ness Preserving Dynamic Histogram Equalization (BPDHE)
(Ibrahim and Pik Kong 2007), Naturalness Preserved Enhan-
cement (NPE) (Wang et al. 2013b), Low-light IMage
Enhancement (LIME) (Guo et al. 2017), Multiple image
Fusion (MF) (Fu et al. 2016), Simultaneous Reflectance and
IlluminationEstimation (SRIE) (Fu et al. 2016), Bio-Inspired
Multi-Exposure Fusion (BIMEF) (Ying et al. 2017a), Joint
Enhancement and Denoising (JED) (Ren et al. 2018), LLNet
(Lore et al. 2017), RetinexNet (Wei et al. 2018), Contex-
tual and Variational Contrast enhancement (CVC) (Celik
and Tjahjadi 2011), DHECI (Nakai et al. 2013), Lay-
ered Difference Representation (LDR) (Lee et al. 2013a),
Robust Retinex Model (Robust) (Li et al. 2018), Single
Image Contrast Enhancer (SICE) (Cai et al. 2018), Weighted

Approximated Histogram Equalization (WAHE) (Arici et al.
2009), Kindling the Darkness (KinD) (Zhang et al. 2019),
Deep Underexposed Photo Enhancement (DeepUPE) (Wang
et al. 2019). CVC, DHECI, LDR, WAHE, and BPDHE are
the histogram equalization-based method. Inverse Dehazing
conducts the dehazing operation in the inverse domain to
enhance low-light images. Robust, MSR, NPE, LIME, MF,
SRIE, and JED are Retinex model-based methods. BIMEF
is the multiple hypothesis fusion-based method. Meanwhile,
SICE, LLNet, RetinexNet, KinD, and DeepUPE are deep
learning-based methods. For the task-driven metrics, we
adopt the face detection results of Dual Shot Face Detec-
torf (DSFD) (Li et al. 2019), PyramidBox (Tang et al. 2018),
Single Shot Scale-Invariant Face Detector (S3FD) (Zhang
et al. 2017), Single Stage Headless Face Detector (SSH)
(Najibi et al. 2017), Selective Refinement Network (SRN)
(Chi et al. 2018), and Faster RCNN (Jiang and Learned-
Miller 2017). The code sources of compared methods are
provided in Table 7. We do not retrain learning-based low-
light enhancement methods and only adopt their pretrained
models. We believe that, for the low-light enhancement task,
the training dataset represents author’s belief about what the
results look like. Therefore, the datasets used in fact belong to
parts of contributions of a work. For example, in RetinexNet,
LLNet, SICE, DeepUPE, and KinD, the datasets are all listed
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as their contributions and belong to a part of their methods.
With this in mind, we do not retrain learning-based methods
and compare different methods with the authors provided
pertained models.

4.3 Results onVE-LOL-L

Objective EvaluationWe conduct the objective evaluation on
the testing set of VE-LOL-L, including 100 synthetic images
and 100 real-world paired images, respectively. The objective
evaluation results are presented in Table 8. From the results,
we can obtain several interesting observations:

– The results of different methods show different superior-
ities using different metrics.

– In general, deep learning-methods, KinD, SICE, and
LLNet, achieve better performance in full-referencemet-
rics, especially obtaining higher PSNR and SSIM results.

– For non-reference image quality assessment methods,
deep-learning and Retinex-based methods, e.g. KinD,
LLNet, JED, MSR, and SRIE, obtain superior results,
which demonstrates the effectiveness of both the powers
of data-driven learning and Retinex vision theory.

– For perceptual quality, deep-learning based methods, i.e.
KinD and SICE win in semantic similarity metrics, i.e.
Perceptual_1 and Perceptual_4 (Johnson et al. 2016),
which shows that, driven by big data, enhancement meth-
ods are better at restoring perceptual properties of images.

– In general, KinD, LLNet, SICE, and JED are the best
four methods as they enter the top three under most of
the evaluation metrics.

Subjective Evaluation We also compare the subjective
quality of different methods in Figs. 6, 7 (real) and 8 (syn-
thesized). It is observed that, the visual results of different
methods show different superiorities. For example, in Fig. 6,
NPE,DHECI,MF, andLIME, generate visually good results.
However, in Fig. 7, KinD achieves a much superior result
than other methods. For real images, BPDHE, BIMEF, JED,
SRIE, Robust, and DeepUPE’s results are under-exposed.
The results of DHECI, NPE, MF and LIME have rich satu-
ration. The results of WAHE, SICE, LDR and CVC have a
dull color distribution. The images are blurry and details are
missing in the result of LLNet when zooming-in the results.
RetinexNet generates similar results to the ground truths from
the viewof the overall signal distribution.However, the visual
quality is not good. Except for Robust, KinD, DeepUPE,
LLNet, and JED, other methods suffer from amplified inten-
sive noise. For Fig. 8, most methods achieve more visually
pleasing results. However, BPDHE, WAHE, LDR, CVC and
DeepUPE still include under-exposed regions, especially for
the left region of the bridge. More visual results will be pre-
sented in the supplementary material.

4.4 Running Time Evaluation

Table 9 reports the per-image running time of each method,
averaged over the images (1080 × 720) in VE-LOL-H, on a
machinewith Intel(R)Xeon(TM)E5-1620 v3 3.50GHzCPU
and 16G RAM. All methods are implemented in MATLAB
with CPU, except SICE by Caffe, Retinex-Net, KinD, Deep-
UPE by Tensorflow and LLNet by Theano with NVIDIA
GeForce GTX 1080 Ti. It is observed that, most methods
can finish processing an image within 2 seconds. BIMEF
achieves the shortest running time. With the help of GPU,
RetinexNet ranks fourth among all methods. It is worth men-
tioning that, all methods are still far away from the need for
real-time processing (30 frames per second).

4.5 Results onVE-LOL-H

Detection Results with Low-Light Inputs Fig. 9a depicts the
precision-recall curves of the baseline face detection meth-
ods for theVE-LOL-H collection,without enhancement. The
baseline methods are trained on WIDER FACE (Yang et al.
2016), a large dataset captured in the well-exposed condition
with large scale variations in diversified attributes and condi-
tions. The results demonstrate that state-of-the-art methods
cannot achieve desirable detection accuracies onVE-LOL-H.
Some examples are illustrated in Fig. 10. The evidences may
imply that though covering variations in poses, appearances,
and scales, previous face datasets are not with sufficient
training sources for images captured in the under-exposed
condition, e.g. images in VE-LOL-H. The poor performance
of state-of-the-art face detection methods then calls a novel
dataset having the diversified distributions of face images in
the under-exposed condition.

We further analyze the performance of face detectors on
subsets of VE-LOL-H with different levels of difficulties.
We split the testset based on two criteria: face scale and light
condition. All faces in VE-LOL-H are divided into three lev-
els based on the average size of the faces in an image: small
(<100 pixel2), medium (100∼ 300 pixel2), and large (>300
pixel2). Considering the facial illumination, all faces are also
divided into three levels based on the average pixel value of
the faces in an image: low illumination (<5), medium illu-
mination (5 10), and high illumination (>10). The results
are presented in Figs. 11 and 12. Clearly, the performance
degradeswhen faces are small and in low illumination.DSFD
achieves the best performance, with average precision rates
greater than other detectors in all cases. The results suggest
that the performance of current state-of-the-art face detectors
will also degradewhen the scales and light conditions change
to some extreme conditions.

Detection Results with Enhanced Inputs Ideally, image
restoration and enhancement algorithms should help object
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(a) Input (b) MSR (1997a) (c) BPDHE (2007) (d) WAHE (2009)

(e) GT (f) CVC (2011) (g) LDR (2013a) (h) NPE (2013b)

(i) DHECI (2013) (j) MF (2016) (k) SRIE (2016) (l) LIME (2017)

(m) LLNet (2017) (n) BIMEF (2017) (o) SICE (2018) (p) RetinexNet (2018)

(q) JED (2018) (r) Robust (2018) (s) KinD (2019) (t) DeepUPE (2019)

Fig. 6 Examples of enhanced results on a real low-light image from VE-LOL-L-Cap

Table 9 Comparison of average per-image running time (second) on images in VE-LOL-H (Resolution: 1080 × 720)

Method MSR Dehazing BPDHE NPE LIME MF SRIE BIMEF JED

Running time (Second) 1.4161 0.9574 0.7506 8.1812 1.2454 1.5136 6.7943 0.1761 1.9646

Method LLNet RetinexNet CVC DHECI LDR Robust SICE WAHE KinD

Running time (Second) 4.0213 0.4690 1.2660 25.3356 0.3602 44.6751 0.8075 1.4023 3.0031
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(a) Input (b) MSR (1997a) (c) BPDHE (2007) (d) WAHE (2009)

(e) GT (f) CVC (2011) (g) LDR (2013a) (h) NPE (2013b)

(i) DHECI (2013) (j) MF (2016) (k) SRIE (2016) (l) LIME (2017)

(m) LLNet (2017) (n) BIMEF (2017) (o) SICE (2018) (p) RetinexNet (2018)

(q) JED (2018) (r) Robust (2018) (s) KinD (2019) (t) DeepUPE (2019)

Fig. 7 Examples of enhanced results on a real low-light image from VE-LOL-L-Cap

detection by improving the quality of the degraded images
and should not impair detection for good quality images.
Following this intuition, we use enhancement methods to
pre-process the VE-LOL-H dataset and two state-of-the-art
face detectionmethods, i.e.DSFD,PyramidBox, andSRN, to
detect the processed data. The visual quality of the enhanced
images is better and the detectors indeed perform superiorly.
As shown in Figs. 9b–d, and 13, the precision of the detec-
tors notably increases compared to that of the data without
enhancement in Fig. 9a. From Fig. 9b–d, it is observed that,
BIMEF, MSR, and MF most significantly improve the per-
formance evaluated using both DSFD and MSR. However,

for PyramidBox, MF, Dehazing, and LIME achieve the most
significant gains. Thus, in general, MF is a good method for
machine vision. Our results also demonstrate that, a sim-
ple cascade of low-light enhancement and state-of-the-art
face detectors present superior results to pretrained models.
In Fig. 9, Proposed denotes our full version method. w/o
Degrade, w/o MDL, w/o Skip, and w/o Fusion denote the
versions without the half cyclic constraint, multiple detec-
tion losses, skip connection from the enhancement module
to the detection module, and dual-path fusion, respectively.
It is observed that, our method largely outperforms existing
baselines, the joint results of existing low-light enhancement
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(a) Input (b) MSR (1997a) (c) BPDHE (2007) (d) WAHE (2009) (e) CVC (2011)

(f) GT (g) LDR (2013a) (h) NPE (2013b) (i) DHECI (2013) (j) MF (2016)

(k) SRIE (2016) (l) LIME (2017) (m) LLNet (2017) (n) BIMEF (2017) (o) SICE (2018)

(p) RetinexNet (2018) (q) JED (2018) (r) Robust (2018) (s) KinD (2019) (t) DeepUPE (2019)

Fig. 8 Examples of enhanced results on a synthetic low-light image from VE-LOL-L-Syn

methods and face detectors. However, we also expect that,
joint optimization of enhancement and detection may utilize
more information in low-light images, which is explored in
the following section.

4.6 Analysis of Noisy Labels in VE-LOL-H

In (2018),Wang et al. discussed performance changes caused
by noisy labels in face recognition. However, the case
changes when meeting face detection, as there are multiple
labels belonging to a given image. In this section, we evalu-
ate the performance of state-of-the-art face detectors trained
with noisy labels in low-light conditions.

The noisy labels are collected from the annotation errors
in the real human labeling process.We perform two rounds of
annotations. A more careful check is employed in the second
round based on the annotations in the first round. In the last
round labeling,we conduct a very rigorous validation process
on the labeled data. For the testing data, we carefully check
every labeled image. In theory, until no wrong labeled face is
found, the labeling process can be stopped. For the training
data, we random select 100 images from every 1000 images.
The labeling process of the 1000 images is stopped until less
than 3 faces in these 100 images are found to be wrongly
labeled. Over ten thousand bounding boxes were adjusted,
resulting in an update from 83,885 bounding boxes to 91,330
bounding boxes on the whole VE-LOL-H. Such a clean and
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(c) PyramidBox (Tang et al., 2018)
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(d) SRN (Chi et al., 2018)

Fig. 9 Comparison of detection accuracies for different face scale in VE-LOL-H

large-scale dataset should enable an unbiased analysis of low-
light enhancementmethods by using face detection accuracy.

By comparing the labels of two rounds, noisy labels in
the real labeling process are obtained. There are various
kinds of label noise in the dataset. For example, bounding
boxes might be shifted and scaled incorrectly, and some-
times annotations might be missing for a certain instance.
It is costly to label a large-scale dataset with high accuracy
because human annotators tend to make tiny mistakes from
time to time. In low-light conditions, the labels are acquired
by annotating on enhanced images. Preprocessors usually
bring unpleasant artifacts that might disturb the judgment
of human annotators. Additionally, the criteria for bound-
ing boxes vary among different annotators. We expect the
bounding boxes tightly fit the recognizable forehead, chin,
and cheek, etc. However, for the occluded faces, some bound-

ing boxes include hats and scarfs, while some recognizable
faces were ignored.

In our experiment, we examine how noisy labels would
degrade the performance of state-of-the-art detectors. Specif-
ically, DSFD is selected as the baseline for the experiments.
During the experiments, we control the noise ratio, the por-
tion of images with noisy labels. The trained detector is
further tested on a carefully refined test set. As shown in
Fig. 14, noisy labels largely degrade the performance of
detectors. As the portion of noisy labels grows, the perfor-
mance of detectors drops severely.
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(a) GT (b) SSH  (2017) (c) PyramidBox  (2018) (d) SRN (2018) (e) DSFD (2019)

Fig. 10 Sample face detection results of pretrained models on the original low-light images of the proposed VE-LOL-H dataset. For better
visualization, The ground truth is enlightened by LIME
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(c) Largeface

Fig. 11 Comparison of detection accuracies for different face scale in VE-LOL-H
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(c) High illumination

Fig. 12 Comparison of detection accuracies for different face brightness for VE-LOL-H

(a) BIMEF (2017) (b) LIME (2017) (c) JED (2018) (d) RetinexNet (2018)

Fig. 13 Sample face detection results of an image by DSFD in the proposed VE-LOL-H dataset enhanced by different methods
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Fig. 14 Evaluation results of DSFD trained on different noise level of
labels

5 ED-TwinsNet for joint Low-Light
Enhancement and Face Detection

Based on the wealth of VE-LOL, we further explore joint
low-light enhancement and face detection. An Enhancement
and Detection Twins Network is proposed to improve the
performance of face detection in the low-light condition. To
fully utilize image priors in both paired and unpaired data, we
introduce an additional half cyclic constraint in the unpaired
case to better train a low-light enhancement module. After
that, the low-light image enhancement module serves as a
learnable preprocessing module of face detection. By con-
necting multi-scale features from different modules across
enhancement and detection phases, robust and discriminative
features are learned for face detection in low-light condi-
tions. A dual-path fusion network is built in the end to take
as input the intermediate features extracted from the original
and enhanced images and fuse them adaptively for the final
prediction of the bounding box locations.

5.1 Problem Formulation

Low-light face detection aims to accurately predict face
boundingboxesω (locations {[a1, b1], [a2, b2], ...., [aT , bT ]}
and sizes {[h1, w1], [h2, w2], ..., [hT , wT ]}) based on the
image x captured in the low-light condition. Low-light face
detection can be formulated as the joint optimization of low-
light image enhancement P(·) and face detection Q(·) as
follows,

[
x̂1, x̂2, ..., x̂n, fx

] = P(x),

ω̂ = Q(x, x̂1, x̂2, ..., x̂n, fx ), (1)

where fx is the extracted feature from the enhancement stage.{
x̂i

}
i=1,...,n are the intermediate enhanced results. In the sec-

ond face detection stage, Q(·) takes as the input the original

input, intermediate enhanced results, and the extracted fea-
ture at the first stage and generates ω̂, which aims to predictω.
The face detection performance is usuallymeasuredwith IoU
(intersection over union) given an overlap threshold (usually
0.5).

5.2 Motivations

To address the problem in Eq. (1), we design themodel archi-
tecture with the following motivations:

– Utilization of information at both original and enhanced
exposure levels After the enhancement process, dark
details might be revealed. However, the processmay gen-
erate artifacts and over-exposed details. Therefore, we
hope that, the detection stage can exploit both informa-
tion of the original input and enhanced results. In our
work,we introduce the dual path fusionmodule that takes
both the extracted features from the original image and
those from the enhanced image as the input to utilize the
information of the well-exposed regions from two inputs
selectively.

– Exploiting both paired and unpaired data Paired data
provides effective priors to guide the restoration of pixel-
level structure. While unpaired data provides useful cues
to infer face locations with high-level semantics. It is
beneficial in theory to exploit both kinds of data to infer
the enhanced results and benefit the successive detec-
tion performance. Therefore, in our work, we create a
half cyclic constrained low-light enhancement method,
where paired data is only used to train the enhancement
module and the unpaired data is utilized to train both the
enhancement and degradation modules. The joint utiliza-
tion of two kinds of data boosts the enhancement capacity
of the model.

– Task correlation at both input and feature ends The two
stages, low-light image enhancement and face detection,
should be considered jointly and they should have com-
munication as much as possible. Therefore, we consider
feed-forwarding the features of the enhancement mod-
ule at different levels to the detection model to make
the two-stage models tie together and the features of the
enhancement module benefit the detection model.

In summary, our detection module as shown in Fig. 15
takes as input the original feature and the enhanced fea-
ture (dual-path fusion), and our enhancement module trained
with both paired and unpaired data (half cyclic constrained
low-light enhancement). Furthermore, to create abundant
connections between the enhancement and detection mod-
ules, the extracted features at the enhancement module are
extracted to facilitate the detection of different grain sizes
(feature extractor and skip connections). Themotivations and
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Fig. 15 The proposed Enhancement and Detection Twins Network
(EDTNet) for joint low-light enhancement and face detection. The fea-
tures extracted by the enhancementmodule are fed into the same level of
the detection module. Thus, these features are interwined and unitedly

learn useful information across two phases for face detection in low-
light conditions. HCC Enhancement enables exploiting both paired and
unpaired data, while Dual-path fusion helps utilize of information at
both original and enhanced exposure levels”

Table 10 Summary of our motivations and modules

Module Motivation Method

HCC enhancement Utilization of information at both original
and enhanced exposure levels

Both the extracted features from the
original image and those from the
enhanced image are taken as the input.

Feature extractor and
Skip connection

Exploiting both paired and unpaired data Paired data is only used to train the
enhancement module and the unpaired
data is utilized to train both the
enhancement and degradation modules.

Dual-path fusion Task correlation at both input and feature
ends

Features of the enhancement module are
feed-forwarded at different levels to the
detection model.

the corresponding model design are summarized in Table 10
and Fig. 15.

5.3 Model Architecture

Enhancement and Detection Twins Network (EDT-Net) The
whole architecture of our method is shown in Fig. 15. It
jointly optimizes the enhancement and detection phases by
tightly connecting their intermediate features together at dif-
ferent levels. It consists of three main parts: a Half Cyclic
Constrained low-light enhancementmodule (denoted as P(·)
and R(·)), a Feature Extraction Module (denoted as Q1(·)),
and Dual-Path Fusion Module (denoted as Q2(·)). In the
first part, besides the enhancement module P(·) usually
trained with paired images, for unpaired low-light images,
we also train a degradation module R(·) to further project the
enhanced results back into low-light images, which confirms
the signal and information fidelity of the enhanced results.
In the second part, we first extract multi-scale features from
the previously enhanced results via Q1(·). Note that, features

from different levels across the enhancement and detection
phases are connected. As a result, robust and discriminative
features are learned to boost the final predictions. In the last
part Q2(·), we feed-forward the extracted features of the orig-
inal low-light images and the enhanced results at the same
time to fully make use of their hidden potentials to facilitate
face detection.

Half Cyclic Constrained (HCC) Low-Light Enhancement
ModuleHCCLow-Light EnhancementModule aims to exca-
vate the image priors of natural images and those about
the mapping from low-light images to normal-light ones.
The enhancement module P(·) consists of an encoder and
a decoder. The encoder learns to extract features for both
detection and low-light enhancement, and the decoder learns
a mapping from feature space to enhanced images. Skip con-
nections are used between encoder and decoder for detail
reconstruction. In order to fully exploit the wealthy informa-
tion of natural images, we use the images in both VE-LOL-L
and VE-LOL-H for training. When using the paired images
in VE-LOL-L, we can use the ground truth x to directly con-
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strain the model training. When using the unpaired images
in VE-LOL-H, the adversarial loss and consistency loss play
a part in guiding the model learning. The loss to train the
enhancement model P(·) is defined as follows,

LEnhance = γ
(∥
∥x̂ − x

∥
∥ − αSSIM

(
x̂, x

)) + LAdv(x̂, x),

LAdv(x̂, x) = −logD(x) − log
(
1 − D(x̂)

)
,

x̂ = P(y), (2)

where y is the low-light input image, x is the ground truth (if
available), and x̂ is the enhanced result of y. γ = 0 denotes
training with images in VE-LOL-H. γ = 1 denotes train-
ing with images in VE-LOL-L. LAdv(·) is the adversarial
loss (Goodfellow et al. 2014). D is the discriminator that is
optimized to distinguish between x and x̂ . α is a weighting
parameter, which is set to 0.5. For the unpaired low-light
images in VE-LOL-H, we also hope to exploit their potential
image priors. Therefore,we introduce a half cyclic constraint.
That is, after enhancement, we use a learned degradation
module R(·) to project x̂ back into a low-light image ŷ and
use an L1 loss to enforce the consistency between ŷ and y as
follows,

LConsistency = ∥
∥ŷ − y

∥
∥ , (3)

ŷ = R(x̂), (4)

where y is regarded as the ground truth here and this loss
confirms that the enhancement process not only improves the
visual quality but keeps the informationfidelity aswell.Addi-
tionally, since many previous enhancement methods aim to
improve human perception instead of machine vision, criti-
cal features for detection might be distorted when the light
condition is adjusted. In order to solve the aforementioned
problems, during the training phase, HCC is jointly trained
with some Feature Enhance layers which are similar to those
in DSFD (Li et al. 2019). We make use of the multi-task
learning strategy, and optimize the modules for both detec-
tion and enhancement tasks. Specifically, we define LHCC

as

LHCC = λ1L
y
Detection + LEnhance + LConsistency, (5)

where λ1 is a weighting parameter, set to 1 by default.
Ly
Detection is the detection loss using the feature of the encoder

of the enhancement network extracted from y.

Feature Extraction Module The Feature Extraction Module
adopts the same structure as the encoder in HCC. We feed-
forward the previously enhanced result x̂ into thismodule and
extract robust features for face detection. Since the down-
sampling layers usually lead to losing essential low-level
information, skip connections are also adopted in order to
share information between the first two stages. By bringing

in some features frommultiple layers in encoder and decoder,
theFeatureExtractionprocess and thepreviousEnhancement
Module learn jointly to extract robust and discriminative
features. The learnt features aggregate both low-level and
high-level information, which is beneficial for the final pre-
diction of face bounding boxes.

Dual-Path Fusion Module This design originates from the
fact that the enhancement operation will magnify visual
information but at the same time inevitably remove some
structure details due to blurring, over-exposure or signal dis-
tortion. Thus, it cannot guarantee to preserve the desirable
information for face detection. From the previous sub-
modules, we obtain features Fy extracted from the original
image y and Fx̂ from its enhanced result x̂ . Then, we con-
catenate them together into a combined feature Fc , which
is further fed into a box regression network to predict the
boundingbox results constrainedbymultiple detection losses
(MDL) as follows,

LDetection = Ly
Detection + Lx̂

Detection + λ2L
c
Detection, (6)

where the three terms denote the detection losses of the paths
taking Fy , Fx̂ , and Fc as input, respectively. λ2 is a weighting
parameter, which is set to 1 by default. Each detection loss
includes both Softmax loss over face and background, and
smooth L1 loss between the parameterizations of the pre-
dicted boxes and ground-truth box ones, as DSFD (Li et al.
2019) does. MDL is designed to serve as a regularization
term and forces both branches to make their own efforts for
better detection, facilitating to utilizemore information at the
feature level.

5.4 Evaluations

5.4.1 Implementation Details

Network Details Our HCC low-light enhancement network
takes a gradual down and up-sampling structure. Resid-
ual blocks are cascaded to transform features and enrich
representational information at each scale. The backbone
of dual-path fusion network adopts a similar structure to
DSFD (Li et al. 2019), using the front end of the VGG net-
work (Simonyan and Zisserman 2014) as a coarse Feature
Extraction Module, connected with extra feature refinement
module, feature fusion module, and box regression module.
The dual-path fusion network is initialized with the weights
pretrained on WIDER FACE training set (Yang et al. 2016).
All the other layers are initialized by “Xavier” method (Glo-
rot and Bengio 2010).

Optimization In our training, we first pretrain the HCC
low-light enhancement network with both the images in
VE-LOL-L and VE-LOL-H. Then, we train the Feature
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Table 11 The mAP scores of different methods

Method Mean average
precision
(mAP) (%)

Pretrained DSFD 13.6

Finetuned DSFD 44.3

MF + pretrained DSFD 39.3

MF + finetuned DSFD 46.8

EnlightenGAN + finetuned DSFD 35.8

DeepUPE + finetuned DSFD 32.3

KinD + finetuned DSFD 29.6

SICE + finetuned DSFD 27.0

Proposed w/o half cyclic constraint
(w/o degrade)

48.2

Proposed w/o skip connection (w/o
Skip)

48.0

Proposed w/o dual-path fusion (w/o
Fusion)

48.0

Proposed w/o multiple detection
losses (w/o MDL)

47.9

Proposed 48.9

Extraction Module with images from VE-LOL-H. Finally,
we finetune the whole network with images from VE-LOL-
H. In the pretraining phase, we use RMSprop optimizer
(Tieleman and Hinton 2012) and set the learning rate to
0.00001.We allow atmost 20 epochs in the pretraining phase.
After that, we use SGD optimizer to fine-tune our dual-path
fusion network and set the learning rate, momentum and
weight decay to 0.0001, 0.9, and 0.0005, respectively. The
fine-tune phase is for at most 5 epochs. The gradient in the
paths related to Fc is only allowed to train its corresponding
box regression module and is forbidden to back-propagate to
the front-end Feature Extractor Module. We implement the
whole framework using the PyTorch library (Paszke et al.
2017).

Data AugmentationWe adopt RandomCrop, HorizontalFlip,
RandomSizedBBoxSafeCrop from the Albumentation
Library (Buslaev et al. 2018) to prevent over-fitting and
construct a more robust model. The first two augmentation
strategies are applied with a probability 0.5, while the last
one is applied with 0.3 possibility. During the Random-
Crop process, input images are cropped into patches of a
size 640 × 640. RandomSizedBBoxSafeCrop is similar to
random cropping and then rescaling patches to 640 × 640.
However, it will make sure there exists at least one bound-
ing box in the resulted image patch. Bounding box labels
are also cropped and rescaled correspondingly. A further fil-
tering process is also adopted, to make sure that only those
patches with bounding box labels inside are further fed in to
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Fig. 16 Evaluation results of different algorithms on the proposed VE-
LOL dataset

the detection modules, while other patches are used to train
the HCC module only.

Inference During inference, all those paths related to Fy and
Fx̂ are ignored andwe only use the path related to Fc to detect
faces in the low-light condition. Finally, non-maximum sup-
pression is applied with 0.3 Jaccard overlap (Tan et al. 2005)
and we use the top 750 confident bounding boxes per image
as the final results.

5.4.2 Experimental Results

We evaluate our joint low-light enhancement and face detec-
tion module on our VE-LOL-H. We compare with the
finetuned results of DSFD taking the input as the pre-
processing results by EnlightenGAN, DeepUPE, KinD and
SICE. We also conduct more ablation studies to analyze the
effect of half cyclic constraint, skip connection from the
enhancement module to the detection module, and dual-path
fusion. The results are shown in Table 11 and Fig. 16. As
shown in Table 11, our method achieves superior perfor-
mance to previouswell-trained baselines. Directly finetuning
DSFD or incorporating a low-light enhancement method, i.e.
MF, SICE, KinD, largely boost the performance. Multiple
detection losses, dual-path fusion, the skip connection from
the enhancement module to the detection module, and half
cyclic constraint will also benefit the final performance gen-
tly. The precision-recall curve is provided in Fig. 16. It is
clearly demonstrated that, after finetuning or retraining on
VE-LOL-L, the models improve the performance a lot, such
as the proposed one, finetunedDSFD and the versionwithout
MDL.
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6 Conclusion and Lessons

In this paper, we systematically evaluate the state-of-the-
arts single-image low-light enhancement. First, a large-scale
low-light image dataset has been presented. The dataset high-
lights captured both paired low and normal-light images and
unpaired low-light images with face annotations. Then, with
rich resources of the dataset, different methods are evaluated
with diverse testing criteria. Last but not least, to handle the
challenge of joint enhancement and detection, we make a
preliminary attempt and acquire better performance with the
power of image prior modeling and dual-path fusion archi-
tecture. From our work, there are many insights we learn
from it:

– There is no method achieving overwhelming superior-
ity on all metrics. Deep learning-based methods tend to
perform well on fidelity-driven metrics. Retinex-based
models achieve better results on other metrics.

– An off-line low-light enhancement may largely improve
the low-light face detection accuracy with the model
pretrained on face images captured in the normal-light
condition.However, the superiority of low-light enhance-
ment methods combined with the face detection methods
is also dependent on the latter.

– Putting the low-light enhancement method as a learnable
preprocessing module sometime may deteriorate the per-
formance of face detection.

– Half cycle constraint provides an effective tool to build
the enhancementmodulemaking use of the unpaired data
in the target domain.

– By connecting features from different levels across
enhancement and detection phases, the two phases are
jointly optimized to learn robust and discriminative fea-
tures for the final prediction of the bounding boxes.

– A successful solution to joint enhancement and detec-
tion is to feed-forward different levels of both input and
enhanced results to the model, and fuse their features
together for the final face detection.

Although our attempts are preliminary, we hope to inspire
the community and attract researchers to this problem. Our
benchmark results reveal state-of-the-art performance and
the limitations in various aspects, and inspire new future
directions, e.g. perception-guided low-light enhancement,
real-time enhancement, and more excellent and compre-
hensive metrics, as well as superior low-light enhancement
algorithms that benefit both human perception and machine
vision.
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